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1 Splines

Shchepetkin and McWilliams (2005) consider a piecewise-parabolic
reconstruction of the vertical density profile from a set of discrete
values {𝜌𝑘|𝑘 = 1, … , 𝑁} that is interpreted as a set of grid-box averages
within each vertical vertical grid box 𝐻𝑘,
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Eq. (1) is similar to Eq. 1.4 of Colella and Woodward (1984) but
uses a non-normalized local vertical coordinate 𝑧′ such that − 𝐻𝑘
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are the density values at the upper and lower grid box interfaces,
respectively. Note that

1
𝐻𝑘

∫
+ 𝐻𝑘

2

− 𝐻𝑘
2

𝜌(𝑧′) 𝑑𝑧′ = 𝜌𝑘, (3)

1



and in particular that the integral Eq. (3) is independent of the
values 𝜌𝑘± 1

2
.

We try to reproduce the algorithms to compute

1. a reconstruction of the density at the grid box interfaces

2. a reconstruction of the vertical density derivatives at the grid box
interfaces, similar to what is done in the function s_balance.m
for temperature/salinity.

1.1 Reconstruction of density

First, the values of density are reconstructed at the interfaces. Given
{𝜌𝑘|𝑘 = 1, … , 𝑁} there are 2𝑁 unknown interface values, but the nota-
tion Eq. (1) already implicitly postulates the continuity of the vertical
density distribution, i.e.
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because both sides of Eq. (4) are denoted using the same expres-
sion 𝜌𝑘+ 1
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. The notation implicitly accounts for 𝑁 − 1 equations ex-

pressing continuity, leaving 𝑁 + 1 unknown interface values {𝜌𝑘+ 1
2
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0, … , 𝑁}. Continuity of the vertical derivative of the density distribu-
tion implies
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where 𝜌′(𝑧′) is from Eq. (1)
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yielding another 𝑁 − 1 equations, leaving 2 equations e.g. for pre-
scription of the first derivative at the bottom and the surface. Since
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each equation of (5) can be written as
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Choosing the boundary conditions 𝜌′(− 𝐻1
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and Eqs. (11), (12) and (10) form a linear tridiagonal system of
𝑁 + 1 equations for the interface values {𝜌𝑘+ 1

2
|𝑘 = 0, … , 𝑁}.

1.2 Reconstruction of the vertical derivative

Second, from Eqs. (5) follows via (7) and (8)
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Multiplying Eq. (14) by two and adding (15) yields
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Eq. (16) becomes
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Choosing again 𝜌′
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with 𝑁 − 1 equations for {𝜌′
𝑘+ 1

2
|𝑘 = 1, … , 𝑁 − 1}. The matrix is
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