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1 Splines

Shchepetkin and McWilliams (2005) consider a piecewise-parabolic
reconstruction of the vertical density profile from a set of discrete
values {p, [k =1,..., N} thatis interpreted as a set of grid-box averages
within each vertical vertical grid box Hj,
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Eq. is similar to Eq. 1.4 of Colella and Woodward (1984) but
uses a non-normalized local vertical coordinate 2’ such that —Z2: <
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are the density values at the upper and lower grid box interfaces,
respectively. Note that



and in particular that the integral Eq. is independent of the
values p; . 1.
We try to reproduce the algorithms to compute

1. a reconstruction of the density at the grid box interfaces

2. areconstruction of the vertical density derivatives at the grid box
interfaces, similar to what is done in the function s balance.m
for temperature/salinity.

1.1 Reconstruction of density

First, the values of density are reconstructed at the interfaces. Given
{p, |k =1,..,N} there are 2N unknown interface values, but the nota-
t|on Eq. . already implicitly postulates the continuity of the vertical
density distribution, i.e.
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because both sides of Eq. are denoted using the same expres-
sion Prtd The notation implicitly accounts for N — 1 equations ex-

pressing continuity, leaving N +1 unknown interface values {pk+%|k =

0,...,N}. Continuity of the vertical derivative of the density distribu-
tion implies
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where p’(z’) is from Eq.

(6)

P+l —Pr—L1 12 (Prpl + Pp-2
oy = Ded Py (M—Jzﬁ

H, H? 2

yielding another N — 1 equations, leaving 2 equations e.qg. for pre-
scription of the first derivative at the bottom and the surface. Since
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each equation of can be written as
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Choosing the boundary conditions p’(—%t) = p’(%x) = 0 yields
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and Egs. (11), (12) and (10) form a linear tridiagonal system of
N +1 equations for the interface values {p; 1|k =0,...,N}.

1.2 Reconstruction of the vertical derivative
Second, from Egs. follows via and
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Multiplying Eq. by two and adding yields
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Denoting
H
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Eq. becomes
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Choosing again p) = p}, . = 0 yields a tridiagonal linear system
2 2
with N —1 equations for {p; .|k =1,.., N —1}. The matrix is
2
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(23)

Contents
References

Colella, P. and P. R. Woodward (1984). The piecewise parabolic method

(PPM) for gas-dynamical simulations. URL: https://www.sciencedirect.

com/science/article/p11/0021999184901438.

Shchepetkin, A.F. and J.C. McWilliams (2005). The regional oceanic
modeling system (ROMS): a split-explicit, free-surface, topography-
following-coordinate oceanic model. URL: |https://doi.org/10.
101b/].0cemod.2004.08.002.


https://www.sciencedirect.com/science/article/pii/0021999184901438
https://www.sciencedirect.com/science/article/pii/0021999184901438
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.1016/j.ocemod.2004.08.002

	Splines
	Reconstruction of density
	Reconstruction of the vertical derivative


